Shape Analysis of Planar Objects with Arbitrary Topologies Using Conformal Geometry
نویسندگان
چکیده
The study of 2D shapes is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of objects from their observed silhouette are extremely crucial and yet difficult. It usually involves an efficient representation of 2D shape space with natural metric, so that its mathematical structure can be used for further analysis. Although significant progress has been made for the study of 2D simply-connected shapes, very few works have been done on the study of 2D objects with arbitrary topologies. In this work, we proposed a representation of general 2D domains with arbitrary topologies using conformal geometry. A natural metric can be defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The main idea is to map the exterior and interior of the domain conformally to unit disks and punctual disks (circle domains), using holomorphic 1-forms. A set of diffeomorphisms from the unit circle S to itself can be obtained, which together with the conformal modules are used to define the shape signature. We prove mathematically that our proposed signature uniquely represents shapes with arbitrary topologies. We also introduce a reconstruction algorithm to obtain shapes from their signatures. This completes our framework and allows us to go back and forth between shapes and signatures. Experimental results shows the efficacy of our proposed algorithm as a stable shape representation scheme. Index Terms Shape analysis; conformal geometry; holomorphic 1-form; conformal modules; shape signature.
منابع مشابه
Elastic Shape Analysis of Boundaries of Planar Objects with Multiple Components and Arbitrary Topologies
We consider boundaries of planar objects as level set distance functions and present a Riemannian metric for their comparison and analysis. The metric is based on a parameterization-invariant framework for shape analysis of quadrilateral surfaces. Most previous Riemannian formulations of 2D shape analysis are restricted to curves that can be parameterized with a single parameter domain. However...
متن کاملA Time-Domain Method for Shape Reconstruction of a Target with Known Electrical Properties (RESEARCH NOTE)
This paper uses a method for shape reconstruction of a 2-D homogeneous object with arbitrary geometry and known electrical properties. In this method, the object is illuminated by a Gaussian pulse, modulated with sinusoidal carrier plane wave and the time domains’ footprint signal due to object presence is used for the shape reconstruction. A nonlinear feedback loop is used to minimize the diff...
متن کاملOptimization of Conformal Mapping Functions used in Developing Closed-Form Solutions for Underground Structures with Conventional cross Sections
Elastic solutions applicable to single underground openings usually suffer from geometry related simplification. Most tunnel shapes possess two axes of symmetry while a wide range of geometries used in tunneling practice involve only one symmetry axis. D-shape or horse-shoe shape tunnels and others with arched roof and floor are examples of the later category (one symmetry axis). In the present...
متن کاملOn Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کامل2D Simulation and Mapping using the Cauchy-Green Complex Barycentric Coordinates
2D Simulation and Mapping using the Cauchy-Green Complex Barycentric Coordinates Conformal maps are especially useful in geometry processing for computing shape preserving deformations, image warping and manipulating harmonic functions. The Cauchy-Green coordinates are complex-valued barycentric coordinates, which can be used to parameterize a space of conformal maps from a planar domain bounde...
متن کامل